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ABSTRACT
Graph-based deep learning is a rapidly evolving and practical field

due to the ubiquity of graph data and its flexible topology. Although

many graph learning frameworks show impressive capabilities,

their outputs begin to deteriorate for sufficiently noisy data. In

this paper, we look to overcome this shortcoming by introducing

the Graph Denoising Network, which combines denoising diffusion

methods with graph models in a compounding manner. We prove

under certain conditions that this can be construed as an MCMC

approach to learning and sampling from the true data distribution.

When testing on a graph built from financial returns, we obtain

Sharpe Ratios of up to 4.4, and consistently above 2. Compared

to a baseline graph convolutional network, we find noticeable im-

provement and statistical evidence to conclude that graph denoising

networks improve performance and attain significant economic

benefits. Our findings are applicable to other domains that employ

noisy graph-based data, potentially in a time-dependent context.

CCS CONCEPTS
•Mathematics of computing→ Markov-chain Monte Carlo
methods; •Computingmethodologies→Neural networks; Learn-
ing latent representations; • Applied computing→ Economics.
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1 INTRODUCTION
Graph representation learning (GRL) is a modern, rapidly devel-

oping field with the aim of projecting a feature rich graph (e.g. a
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transport network with vertices representing cities, possibly hold-

ing information such as size or population, and edges representing

connection via land or air travel) onto a lower-dimensional mani-

fold where the data lies; the latent space. A key requirement is that

the mapping be invariant under graph isomorphism (i.e. relabelling

the vertices has no impact). This permutation invariance is one

of the features that sets GRL apart from other machine learning

domains. The latent space aims to provide a better environment for

downstream inference tasks, typically involving vertex prediction

(predicting labels for some or all of the vertices) or relation predic-

tion (predicting edge existence between vertex pairs) [6]. In this

paper we focus on vertex prediction tasks.

A seemingly unrelated area, but one we look to bring to GRL,

are generative models, specifically denoising diffusion models. De-

noising diffusion models have emerged as a powerful new family

of deep generative models with high performance in many appli-

cations, including image denoising and synthesis [28]. They have

broken the long-time dominance of generative adversarial networks

(GANs) and are now industry leading [28]. Popular models such as

DALL-E 2 from OpenAI and Imagen from Google rely on denoising

diffusion, producing state-of-the-art synthesis results [17, 20].

We hypothesise that the correct utilisation of denoising diffu-

sion models in GRL will allow for cleaner data to be passed into

GRL models, resulting in latent representations closer to the true

underlying data, thus increasing performance. To test this hypothe-

sis, we consider a detailed application to stock market data. This

domain inspired the idea of bringing denoising diffusion models to

GRL due to their capabilities of removing Gaussian noise. An issue

with financial data is the high noise-to-signal ratio. This noise is

due to inherently highly-volatile latent market factors and a com-

plex market outlook with future price returns influenced by many

variables, ranging from news and current affairs to weather and

macroeconomic variables. Typically, the noise destroys any kind of

representation learning, hence the reason why linear models are so

commonly relied upon in industry in real-time production environ-

ments. If one passes raw data as input, a typical deep learning model

will learn and exploit a set of spurious correlations, rather than any

useful time-persistent alpha generating representation. With this

in mind, we view financial data as a highly relevant application

for graph denoising networks (GDNs). It allows one to test if the

model removes enough noise that a meaningful representation is

ultimately learned, thus enabling the applicability of said model to

suitably defined downstream tasks of interest.

Summary of main contributions.We introduce a novel graph

denoising network, and propose a novel training method for it,
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along with code for its implementation. The model takes a semi-

supervised approach, combining two areas that, to the best of our

knowledge, have not been previously connected. It brings the unsu-

pervised generativemethods of denoising diffusion to vertex feature

creation, in an attempt to learn the original generative process. Our

combination of these two areas is via compounded message passing,
rather than just separate model blocks passed sequentially. In Theo-

rem 3, we prove under the right assumptions that this can be viewed

as a Markov-chain Monte Carlo (MCMC) approach to finding and

then generating data from the true underlying distribution. To this

end, our model can be seen as its own class of graph-based models,

rather than simply an adaptation of spatio-temporal methods. We

demonstrate the efficacy of our approach on a financial data set

of equity returns, where it attains significantly higher economic

benefits and Sharpe Ratios, when compared to a baseline graph

convolutional network. Our code and data are fully available at

https://github.com/edwardbturner/GDN_finance.

2 PRELIMINARIES
2.1 Markov chains
Here we introduce (time-homogeneous) Markov chains with possi-

bly infinite state spaces to later use in Section 3. Let (𝑋𝑡 )𝑡≥1 be a

sequence of random variables on the probability space (Ω,BΩ, 𝜇)
with Ω possibly infinite, BΩ the Borel 𝜎-algebra on Ω and 𝜇 a prob-

ability measure. Further, let 𝑆𝜇 = 𝑠𝑢𝑝𝑝 (𝜇) := {𝐵 ∈ BΩ | 𝜇 (𝐵) > 0}.
We say (𝑋𝑡 )𝑡≥1 is a Markov chain with memory𝑚 if:

𝐾 (𝑋1: 𝑡−1, 𝐴) := P(𝑋𝑡 ∈ 𝐴 |𝑋𝑡−1, ..., 𝑋1) (1)

= 𝑃 (𝑋𝑡 ∈ 𝐴 |𝑋𝑡−1, ..., 𝑋𝑡−𝑚) ∀𝐴 ∈ BΩ , (2)

where 𝐾 (𝑋1: 𝑡−1, 𝐴) is the transition kernel. In the case of𝑚 = 1

(𝑋𝑡 )𝑡≥1 is called a Markov chain and we abbreviate 𝐾 (𝑋1: 𝑡−1, 𝐴)
with 𝐾 (𝑋𝑡−1, 𝐴).

A Markov chain is ergodic if it is positive Harris recurrent:

P(𝑋𝑡 ∈ 𝐴 infinitely often |𝑋1 = 𝑥) = 1 ∀𝑥 ∈ Ω , ∀𝐴 ∈ 𝑆𝜇 , (3)

and aperodic: there are no sections of Ω that it can only visit at

certain times.

The distribution 𝜇 is invariant for the Markov chain (𝑋𝑡 )𝑡≥1 if:

𝜇 (𝐴) =
∫
Ω
𝐾 (𝑥,𝐴)𝜇 (𝑑𝑥) ∀𝐴 ∈ BΩ , (4)

and is an equilibrium distribution if for 𝜇-almost all 𝑥 ∈ Ω:

lim

𝑡→∞
P(𝑋𝑡 ∈ 𝐴 |𝑋1 = 𝑥) = 𝜇 (𝐴) ∀𝐴 ∈ BΩ . (5)

Finally, a Markov chain (𝑋𝑡 )𝑡≥1 with invariant distribution 𝜇 is

strongly irreducible if:

𝐾 (𝑥,𝐴) > 0 ∀𝑥 ∈ Ω , ∀𝐴 ∈ 𝑆𝜇 . (6)

2.2 Graph neural networks
We consider graphs of the form G = (V,E,W,X) where V is

the vertex set, E is the edge set, W is the (possibly weighted)

adjacency matrix and X is a vertex feature matrix. Graph neural

networks (GNNs) are a deep learning approach to GRL that work

via a multi-layer message passing framework, comprising of an

initial layer and L further layers [6]. For an input graph G, the
𝑘th layer contains 𝑛 nodes and may be represented as a matrix,

H (𝑘 ) =
(
ℎ
(𝑘 )𝑇
1

, ..., ℎ
(𝑘 )𝑇
𝑛

)𝑇 ∈ R𝑛×𝑑𝑘 , with 𝑑𝑘 being the dimension

of the graph embedding in the 𝑘th layer. Here ℎ
(𝑘 )
𝑖

∈ R1×𝑑𝑘
is

a row vector that represents the 𝑖th node in the 𝑘th layer which

corresponds to the 𝑖th vertex of G. A general GNN is initialised by

the following iteration:

H (0) = X , (7)

ℎ
(𝑘+1)
𝑖

= 𝜙

(
ℎ
(𝑘 )
𝑖
,

⊕
𝑗∈N(𝑖 )

𝜓
(
ℎ
(𝑘 )
𝑗

) )
, (8)

where N(𝑖) := { 𝑗 : 𝑒𝑖, 𝑗 ∈ E} is the neighbour set of the 𝑖th vertex,

⊕ is a differentiable aggregation function that may depend on 𝑘 ,𝜓

is a differentiable transformation that may depend on 𝑘 or W and

𝜙 is a differentiable update function that may also depend on 𝑘 or

W. The first layer is set to be the vertex features and then for each

following layer a vertex’s embedding is based on its previous em-

bedding updated with an aggregation of its neighbouring vertices’

transformed previous embeddings. We take H (𝐿)
to be our final

low-dimension embedding of the graph, the latent representation.

To avoid overfitting a self-loop approach is often used, here

Eqn (8) becomes:

ℎ
(𝑘+1)
𝑖

=
⊕

𝑗∈N(𝑖 )∪{𝑖 }
𝜓

(
ℎ
(𝑘 )
𝑗

)
, (9)

that is, the update and aggregate functions are replaced by a single

aggregate function [6]. This results in a vertex’s previous embed-

ding being viewed with equal importance (modulo any 𝜓 depen-

dence onW) as its neighbours.

2.3 Graph convolutional networks
Graph convolutional networks (GCNs) were one of the first mod-

els that brought GRL to the forefront of machine learning. The

methodology GCNs rely on was introduced by Bruna et al. and

then extended by Defferrard et al. [2, 4]. The framework takes in-

spiration for its aggregate functions from Fourier transforms in the

spectral domain [29]. Defferrard et al. define the normalised graph

Laplacian, L := 𝐼𝑛 − D− 1

2 WD− 1

2 where D𝑖𝑖 = Σ 𝑗W𝑖 𝑗 , and then

consider its spectral decomposition L = 𝑈Λ𝑈𝑇 , with Λ ∈ R𝑛×𝑛
the diagonal matrix of eigenvalues of L and 𝑈 ∈ R𝑛×𝑛 the matrix

of eigenvectors of L, known as the graph Fourier basis [4, 22]. For

𝑥 ∈ R𝑛 , a single feature vector, they use a self-loop approach with

a filter matrix, 𝑔𝜃 := diag(𝜃 ) ∈ R𝑛×𝑛, 𝜃 ∈ R𝑛 , for the aggregate
function, defined by:

𝑔𝜃 ∗ 𝑥 := 𝑈𝑔𝜃𝑈
𝑇 𝑥 . (10)

Thus 𝑔𝜃 acts in the eigenspace of L and hence we may view it as a

function of its eigenvalues: 𝑔𝜃 (Λ). The eigendecomposition of L
and subsequent evaluation of Eqn (10) is computationally expensive,

thus similarly to classical CNNs work was done to to localise the

filter and reduce the number of parameters, subsequently reducing

the computational complexity. Hammond et al. proposed truncating

the Chebyshev polynomial expansion of 𝑔𝜃 (Λ) up to the 𝐾 th
order

[7], which yields:

𝑔𝜃 (Λ) ≈
𝐾∑︁
𝑘=0

𝜃 ′
𝑘
𝑇𝑘 (Λ̃) , (11)

https://github.com/edwardbturner/GDN_finance
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where𝜃 ′
𝑘
is a vector of trainable Chebyshev coefficients and𝑇𝑘 (Λ̃) ∈

R𝑛×𝑛 is the Chebyshev polynomial of order 𝑘 evaluated at Λ̃ :=
2

𝜆max

Λ − 𝐼𝑛 with 𝜆max denoting the largest eigenvalue of L [8, 29].

The Chebyshev polynomials are recursively defined by 𝑇0 (𝑥) = 1,

𝑇1 (𝑥) = 𝑥 and 𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1
(𝑥) − 𝑇𝑘−2

(𝑥) ∀𝑘 ≥ 2 [7]. Note,

Eqn (11) is now𝐾-localised since it is a𝐾 th
-order polynomial in the

Laplacian, that is it only depends on vertices that are at maximum

𝐾 steps away from the central vertex.

Defferrard et al. combine Eqn (10) with Eqn (11) to obtain their

GCN message passing framework:

𝑔𝜃 ∗ 𝑥 ≈ 𝑈
(
𝐾∑︁
𝑘=0

𝜃 ′
𝑘
𝑇𝑘 (Λ̃)

)
𝑈𝑇 𝑥 (12)

=

𝐾∑︁
𝑘=0

𝜃 ′
𝑘
𝑇𝑘 ( ˜L)𝑥 , (13)

where line (13) follows from noting (𝑈Λ𝑈𝑇 )𝑘 = 𝑈Λ𝑘𝑈𝑇 and defin-

ing
˜L := 2

𝜆max

L − 𝐼𝑛 [4]. Kipf et al. introduced a simplified version

of Eqn (13) by restricting to 𝐾 = 1 and approximating 𝜆max ≈ 2,

resulting in:

𝑔𝜃 ∗ 𝑥 ≈ 𝜃 ′
0
𝑥 + 𝜃 ′

1
(L − 𝐼𝑛)𝑥 (14)

≈ 𝜃 (𝐼𝑛 + D− 1

2 WD− 1

2 )𝑥 , (15)

where line (15) follows by setting 𝜃 = 𝜃 ′
0
= −𝜃 ′

1
[12]. Normalising

𝐼𝑛 + D− 1

2 WD− 1

2 and generalising Eqn (15) to handle a vertex

feature matrix results in their GCN:

ℎ
(𝑘+1)
𝑖

= 𝜎

( ∑︁
𝑗∈N(𝑖 )∪{𝑖 }

𝑐𝑖, 𝑗ℎ
(𝑘 )
𝑗

Θ(𝑘 )
)
, (16)

which can be succinctly written to update the whole layer at once:

H (𝑘+1) = 𝜎
(
D̃− 1

2 W̃D̃− 1

2 H (𝑘 )Θ(𝑘 )
)
, (17)

where D̃− 1

2 W̃D̃− 1

2 is the symmetric normalisation of the weight

matrix with added self-loops, specifically W̃ = W + 𝐼𝑛 and D̃𝑖𝑖 =

Σ 𝑗W̃𝑖 𝑗 [12]. Here 𝑐𝑖, 𝑗 is a normalisation constant determined by

𝐷− 1

2 W̃𝐷− 1

2 , Θ(𝑘 ) ∈ R𝑑𝑘×𝑑𝑘+1
is a trainable weight matrix and 𝜎 is

an element-wise non-linear activation function, taken to be ReLU

by Kipf et al. [12]. This model is able to efficiently encode both

the local graph structure and the vertex features [12, 13]. Applying

𝐾 layers of Eqn (17) achieves a similar effect as one passing of

the 𝐾-order convolution, while the layer-wise linear structure is

parameter-economic and highly efficient for large-scale graphs

since the order of the approximation is limited to one [29].

2.4 Denoising diffusion probabilistic models
Diffusion models are latent variable models where for input data,

𝑥0 ∈ R𝑛 , latents are created, 𝑥1, ..., 𝑥𝑇 ∈ R𝑛 , and the model is

𝑝𝜃 (𝑥0) :=
∫
𝑝𝜃 (𝑥0:𝑇 ) 𝑑𝑥1:𝑇 [24]. Denoising diffusion models are a

family of probabilistic generative models that progressively destroy

input data by injecting noise [28]. They then learn to reverse this

process for sample synthesis or other applications such as sample

denoising. They are the current cutting edge for generative models

and have been shown as far superior to GANs. Their benefit as a

generative model is attributed to avoiding mode collapse and more

stable training [15].

Ho et al. introduced denoising diffusion probabilistic models

(DDPMs) where the original application was data generation [9].

A DDPM makes use of two Markov chains: a forward chain that

perturbs data to noise, and a reverse chain that converts noise

back to data [28]. The former is typically a multi-step addition of

Gaussian noise, while the latter reverses the former by learning

transition kernels parameterised by a deep neural network [28].

DDPMs are distinguished from other latent variable models due

to the approximate posterior 𝑞(𝑥1:𝑇 |𝑥0), called the forward (diffu-

sion) process, defined as a Markov chain that gradually adds Gauss-

ian noise to the data according to a variance schedule 𝛽1, ..., 𝛽𝑇 ∈
(0, 1) [9]. For input data 𝑥0 ∈ R𝑛 , the latents 𝑥1, ..., 𝑥𝑇 ∈ R𝑛 have

the following distributions:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) , (18)

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡 𝑥𝑡−1, 𝛽𝑡 𝐼𝑛) . (19)

Since 𝑞(𝑥𝑡−1 |𝑥𝑡 ) = 𝑞(𝑥𝑡 |𝑥𝑡−1)𝑞(𝑥𝑡−1)/𝑞(𝑥𝑡 ) it is intractable to
calculate 𝑞(𝑥𝑡−1 |𝑥𝑡 ) despite having 𝑞(𝑥𝑡 |𝑥𝑡−1), as one would also

need to know 𝑞(𝑥𝑡−1) and 𝑞(𝑥𝑡 ), which due to marginalisation both

depend on 𝑞(𝑥0), the very distribution we are trying to estimate.

To overcome this we approximate 𝑞(𝑥𝑡−1 |𝑥𝑡 ) with a reverse pro-

cess instead. The joint distribution 𝑝𝜃 (𝑥0:𝑇 ) is called the reverse
process, and it is defined as a Markov chain with learned Gaussian

transitions starting with 𝑝 (𝑥𝑇 ) = N(𝑥𝑇 ; 0, 𝐼𝑑 ). Then we have:

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇−1∏
𝑡=0

𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1) , (20)

𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1) = N(𝑥𝑡 ; 𝜇𝜃 (𝑥𝑡+1, 𝑡 + 1), 𝜎2

𝑡+1
𝐼𝑛) , (21)

where 𝜎2

1
, ..., 𝜎2

𝑇
are time dependent constants and 𝜇𝜃 (𝑥𝑡+1, 𝑡 + 1)

is estimated by a deep neural network [9]. Typically the U-Net

architecture is used, we cover the details of this in Section 3 [18].

The loss Ho et al. aim to minimise is the variational lower bound:

𝐿
vlb

(𝜃 ) := E𝑞

[
−log

𝑝𝜃 (𝑥0:𝑇 )
𝑞(𝑥1:𝑇 |𝑥0)

]
(22)

= E𝑞

[
− log (𝑝𝜃 (𝑥0 |𝑥1)) + 𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0) | |𝑝𝜃 (𝑥𝑇 ))

+
𝑇−1∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0) | |𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1))
]
,

(23)

where𝐷𝐾𝐿 is the Kullback–Leibler divergence. Defining 𝛼𝑡 := 1−𝛽𝑡
and 𝛼𝑡 :=

∏𝑡
𝑠=1

𝛼𝑠 , they approximate 𝐿
vlb

(𝜃 ) with:

𝐿
simple

(𝜃 ) := E𝑡,𝑥0,𝜖

[

𝜖 − 𝜖𝜃 (√𝛼𝑡𝑥0 +
√

1 − 𝛼𝑡𝜖, 𝑡)


2

2

]
, (24)

where the following reparameterisation has been used:

𝜇𝜃 (𝑥𝑡 , 𝑡) =
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
. (25)

This allows the mean squared error (MSE) of 𝜖𝜃 (𝑥𝑡 , 𝑡) to be targeted
rather than the MSE of 𝜇𝜃 (𝑥𝑡 , 𝑡) which Ho et al. find to improve

results [9]. The derivations of lines (23) and (25) are shown in the

original DDPM paper [9].
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2.5 Denoising diffusion restoration models
Firstly we introduce the idea of linear inverse problems and then dis-

cuss their relevance to denoising. A general linear inverse problem

takes the form:

𝑦 = 𝐻𝑥0 + 𝑧 , (26)

where 𝑦 ∈ R𝑚 is the noisy observation of the true signal 𝑥0 ∈
R𝑛 , 𝐻 ∈ R𝑚×𝑛

is a known linear degradation matrix and 𝑧 ∼
N(0, 𝜎2

𝑦𝐼𝑚) is a Gaussian noise term with known variance [11].

Given we observe 𝑦 we aim to sample from the posterior 𝑞(𝑥0 |𝑦) =
𝑞(𝑦 |𝑥0)𝑞(𝑥0)/𝑞(𝑦) to reconstruct 𝑥0. As with DDPMs, in general

we do not know 𝑞(𝑥0) and thus look to sample from an approximate

posterior, 𝑝𝜃 (𝑥0 |𝑦), instead.
Denoising diffusion restoration models (DDRMs) were intro-

duced by Kawar et al. [11], they use an unsupervised approach to

solving linear inverse problems in an attempt to denoise a sample

to the desired output, conditioned on the measurements and the

inverse problem [11]. DDRMs take a Bayesian approach to solv-

ing general linear inverse problems by using a DDPM, pre-trained

on the same domain, as a prior [10]. They have been shown to

have impressive practical results, such as speech enhancement and

strong-lense source recognition in Physics [10, 21].

Kawar et al. introduce computationally efficient results in the

singular value space of 𝐻 however we only require the denoising

case: 𝐻 = 𝐼𝑛 , thus we make no further comments on the singular

value decomposition specifics. The DDRM framework is the same

as a DDPM but with conditional processes:

𝑞(𝑥1:𝑇 |𝑥0, 𝑦) = 𝑞(𝑥𝑇 |𝑥0, 𝑦)
𝑇−1∏
𝑡=0

𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0, 𝑦) , (27)

𝑝𝜃 (𝑥0:𝑇 |𝑦) = 𝑝𝜃 (𝑥𝑇 |𝑦)
𝑇−1∏
𝑡=0

𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1, 𝑦) . (28)

Note in Eqn (27) the backward conditionals, 𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0, 𝑦), are
used instead of the forward conditionals, 𝑞(𝑥𝑡+1 |𝑥𝑡 , 𝑥0, 𝑦). However,
thanks to Bayes rule, which is now feasible due to 𝑞(𝑥𝑡 |𝑥0, 𝑦) and
𝑞(𝑥𝑡+1 |𝑥0, 𝑦) being tractable, the forward conditionals are also well

defined. Kewar et al. then define the forward process for 𝐻 = 𝐼𝑛 by:

𝑞(𝑥𝑇 |𝑦) = N(𝑥𝑇 ; 𝑦, 𝜎2

𝑇 − 𝜎2

𝑦) , (29)

and if 𝜎𝑡 ≥ 𝜎𝑦 then:

𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0, 𝑦) = N(𝑥𝑡 ; (1 − 𝜂𝑏 )𝑥0 + 𝜂𝑏𝑦, 𝜎2

𝑡 − 𝜎2

𝑦𝜂
2

𝑏
) , (30)

otherwise for 𝜎𝑡 < 𝜎𝑦 :

𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0, 𝑦) = N(𝑥𝑡 ; 𝑥0 +
√︃

1 − 𝜂2𝜎𝑡
𝑦 − 𝑥0

𝜎𝑦
, 𝜂2𝜎2

𝑡 ) , (31)

where 𝜎𝑡 corresponds to 𝛼𝑡 in DDPMs, thus it represents the noise

at step 𝑡 . 𝜂 ∈ (0, 1] sets the transition variance with 𝜂 and 𝜂𝑏 both

possibly depending on 𝜎𝑡 and 𝜎𝑦 [11].
1

For 𝐻 = 𝐼𝑛 the DDRM reverse process is defined as in Eqn (29)

to Eqn (31) but swapping 𝑥0 with 𝑥𝜃,𝑡 , where 𝑥𝜃,𝑡 := 𝑓𝜃 (𝑥𝑡+1, 𝑡 + 1)

1
Here we assume 𝜎𝑇 ≥ 𝜎𝑦 , Kawar et al. argue this is a valid assumption as 𝜎𝑇 can be

set sufficiently large [11].

Figure 1: Our PIU-Net architecture for a vertex feature ma-
trix of 𝑛 vertices and feature size 𝑑 = 16. Each vertical bar
represents the convolved matrix at that point with black
ends representing padding. The number above each bar is
the number of channels at that point. (Figure is an adaptation
of one in the original U-Net paper [18].)

for some deep neural network 𝑓𝜃 (·, ·) with a trainable parameter 𝜃

[11]. Kawar et al. then use the conditional equivalent of Eqn (23):

𝐿
cvlb

(𝜃 ) := E𝑞

[
−log (𝑝𝜃 (𝑥0 |𝑥1, 𝑦)) + 𝐷𝐾𝐿 (𝑞(𝑥𝑇 |𝑥0, 𝑦) | |𝑝𝜃 (𝑥𝑇 |𝑦))

+
𝑇−1∑︁
𝑡=1

𝐷𝐾𝐿 (𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0, 𝑦) | |𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1, 𝑦))
]
. (32)

Theorem 1. If 𝑓𝜃 (·, 𝑡) and 𝑓𝜃 (·, 𝑡 ′) do not share weights for 𝑡 ≠ 𝑡 ′

then for 𝜂 = 1 and 𝜂𝑏 =
2𝜎2

𝑡

𝜎2

𝑡 +𝜎2

𝑦
the DDRM loss, 𝐿

cvlb
(𝜃 ), is equivalent

to the DDPM loss, 𝐿
vlb

(𝜃 ).

Proof. In Appendix C of the original DDRM paper [11]. □

Theorem 1 is what gives DDRMs their practical usefulness. It

allows the function 𝜇𝜃 (𝑥𝑡 , 𝑡) from a pre-trained DDPM to be used

for the DDRM 𝑓𝜃 (𝑥𝑡 , 𝑡) function. Thus we can now sample from

𝑝𝜃 (𝑥0 |𝑦) without having to re-train the DDRM for each observed

𝑦. Equally all the hyper-parameters and degradation type can be

changed without the need for retraining. In order for the 𝑓𝜃 (𝑥𝑡 , 𝑡) =
𝜇𝜃 (𝑥𝑡 , 𝑡) assumption to be valid, one needs to train the DDPM on

the same domain as that of the observed data.

3 GRAPH DENOISING NETWORKS
The first component of our model is a permutation invariant deep

neural network that serves as the DDPM 𝜇𝜃 (𝑥𝑡 , 𝑡) function and

thus from Theorem 1 also the DDRM 𝑓𝜃 (𝑥𝑡 , 𝑡) function. We take

inspiration from the original DDPM paper where a U-Net is used;

this is a deep neural network originally introduced for medical



Graph Denoising Networks: A Deep Learning Framework for Equity Portfolio Construction ICAIF ’23, November 27–29, 2023, Brooklyn, NY, USA

imaging [9, 18]. U-Net works by convolving the input down in

stages to a bottleneck point, and then upscaling by concatenating

each downscaled step with an upsample [18].

We introduce Permutation Invariant U-Net (PIU-Net), which, to

the best of our knowledge, is a novel architecture. Having seen

the success of Yu et al.’s ST-GCN, where they create permutation

invariant CNNs by adapting to a 1-D kernel, we create PIU-Net

with a similar ideology [29]. Namely we adapt all the U-Net CNNs

to have 1-D kernels, strides and padding. At the same time, we

adapt the model to handle non-square inputs, the only requirement

is𝑊 ≡ 0 (mod 8), where𝑊 is the width of the input matrix.

Figure 1 shows the full model architecture, here CNNs with a

stride of (1, 2) are used for our downsampling and deconvolutional

neural networks (DNNs), as introduced by Zeiler et al., are used

for our upsampling [30]. As in the original DDPM paper we use a

sinusoidal embedding with a single hidden layer multi-layer per-

ceptron (MLP) to condition the backwards process on the time step

[9]. The resulting tensors are added channel-wise to the PIU-Net

output at each level.

Now that we have a permutation invariant model to train a

DDPM, we define our full GDN. Figure 2 shows an overview. The

pipeline starts by taking the vertex features on day 𝑡 ,X (𝑡 )
, and using

them as the noisy observation,𝑦 (𝑡 ) , in the DDRM. To sample𝑋
(𝑡 )
0

∼
𝑝𝜃 (𝑥0 |𝑦 (𝑡 ) ), a denoised version of 𝑦 (𝑡 ) as in Eqn (26), we require a

trained 𝜇𝜃 (·, ·) from the DDPM to use as the DDRMs 𝑓𝜃 (·, ·). This,
however, is an issue since training 𝜇𝜃 (·, ·) requires samples from

the true underlying distribution, 𝑥
(𝑡 )
0

∼ 𝑞(𝑥0). To overcome this,

we use past outputs of our GCN as an approximation. Letting 𝑥
(𝑡 )
0

denote the GCN output from day 𝑡 we use 𝑥
(𝑡−1)
0

, ..., 𝑥
(𝑡−𝑙𝑏 )
0

as

approximate samples from 𝑞(𝑥0), where 𝑙𝑏 is a lookback training

parameter.
2
This allows the DDPM to learn 𝜇̃𝜃 (·, ·) ≈ 𝜇𝜃 (·, ·). We

can then use the DDRM with 𝜇̃𝜃 (·, ·) to sample 𝑋̃
(𝑡 )
0

∼ 𝑝𝜃 (𝑥0 |𝑦 (𝑡 ) ),
an approximation of 𝑝𝜃 (𝑥0 |𝑦 (𝑡 ) ), giving an approximately denoised

version of X (𝑡 ) = 𝑦 (𝑡 ) .
The intuition behind this is that the GCN guides the direction

of the true underlying distribution for the DDPM to train on. This

follows as GRL models typically assume the latent representation

is more informative of the true distribution than the vertex features

[6]. The key to GDNs is then the cyclical compounding framework,

the DDRM component removes noise so as training progresses

the GCN outputs become progressively closer to the true denoised

distribution, allowing future DDRM samples to be closer to the true

denoised data. Formally the GDN makes two assumptions:

Assumption 1. X = GCN(𝑥0) + 𝑍 where 𝑍 = (𝑧𝑖, 𝑗 ) ∈ R𝑛×𝑑
with 𝑧𝑖, 𝑗 ∼ N(0, 𝜎2

𝑦).

This stems from using X = 𝑦 (𝑡 ) and our linear degradation

assumption in Eqn (26). Data from many domains should satisfy

Assumption 1; here, we focus on applying GDNs to financial returns

data where we consider X to be log-returns. Thus Assumption 1

translates to saying that each stock’s return 𝑘 days ago, X𝑠,𝑘 , can
be viewed as an aggregation of signals from its neighbourhood,

(GCN(𝑥0))𝑠,𝑘 , for tomorrow’s return plus some noise, 𝑧𝑠,𝑘 . This is

2
Here we train on the most recent 𝑙𝑏 days to avoid concept drift. To see full training

details and reproduce our results refer to the provided code.

Figure 2: The GDN framework where superscripts refer to
the day the data comes from. Here 𝑥 (𝑡−1)

0
, ..., 𝑥 (𝑡−𝑙𝑏 )

0
are pre-

vious GCN outputs used for training the DDPM, which then
passes the trained 𝜇̃𝜃 (·, ·) to the DDRM. This in turn allows
us to sample from 𝑝𝜃 (𝑥0 |𝑦 (𝑡 ) ), obtaining 𝑥 (𝑡 )

0
, which we hy-

pothesise will be a denoised version of X (𝑡 ) = 𝑦 (𝑡 ) .

a standard way to view returns with Campbell et al.’s Econometrics
of Financial Markets textbook arguing returns form of a signal,

representing the expected return based on fundamental factors

such as earnings and dividends, plus a noise, from the unpredictable

variation in returns due to factors such as news and sentiment [3].

Assumption 2. 𝑋
(𝑡−𝑘 )
0

𝑑≈ 𝑞(𝑥0) ∀𝑘 ∈ {1, ..., 𝑙𝑏}.

The intuition behind Assumption 2 being valid, and why we

propose the compounding model, comes from viewing 𝑥
(𝑡 )
0

(the

observed 𝑋
(𝑡 )
0

values) as samples from a Markov chain with mem-

ory 𝑙𝑏. That is consider (𝑋 (𝑡 )
0

)𝑡≥1, the random sequence of DDRM

outputs after passing the GCN module. The stochasticity comes

from sampling 𝑋̃
(𝑡 )
0

∼ 𝑝𝜃 (𝑥0 |𝑦 (𝑡 ) ) in the DDRM and the transition

kernels are:

𝐾 [𝑙𝑏 ] (𝑋 (1: 𝑡−1)
0

, 𝐴) =

P
(
GCN

[𝑙𝑏 ] (𝑋̃ (𝑡 )
0

∼ DDRM(𝜇̃ [𝑙𝑏 ]
𝜃

, 𝑦 (𝑡 ) )
)
∈ 𝐴

)
,

(33)

where GCN
[𝑙𝑏 ]

and 𝜇̃
[𝑙𝑏 ]
𝜃

are trained on the previous 𝑙𝑏 days.

Under the assumption we re-initialise parameters before training

on day 𝑡 we have:

P
(
𝑋

(𝑡 )
0

∈ 𝐴
��� 𝑋 (𝑡−1)

0
, ..., 𝑋

(1)
0

)
=

P
(
𝑋

(𝑡 )
0

∈ 𝐴
��� 𝑋 (𝑡−1)

0
, ..., 𝑋

(𝑡−𝑙𝑏 )
0

)
,

(34)

thus (𝑋 (𝑡 )
0

)𝑡≥1 is a Markov chain with memory 𝑙𝑏. We now state

the relevant ergodic Theorem which is key to our main result;

Theorem 3.

Theorem 2. Let (𝑍𝑡 )𝑡≥1 be an ergodic Markov chain with (pos-
sibly infinite) state space Ω. If 𝜇 is the equilibrium distribution of
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(𝑍𝑡 )𝑡≥1 then for any initial distribution:

lim

𝑛→∞
1

𝑛

𝑛∑︁
𝑡=1

𝑓 (𝑍𝑡 )
𝑎.𝑠.
=

∫
Ω
𝑓 𝑑𝜇 , (35)

for all 𝜇-integrable functions 𝑓 : Ω → R with
∫
Ω |𝑓 | 𝑑𝜇 < ∞.

Proof. Theorem 3 from Tierney’s paper [25]. □

The other result we require is the following:

Lemma 1. Assume 𝑙𝑏 = 1 and 𝑆𝑞 (𝑥0 ) ⊆ 𝐼𝑚(GCN), that is the
support of 𝑞(𝑥0) lies within the GCN range. Then if D̃− 1

2 W̃D̃− 1

2 ,
Θ(0) , ...,Θ(𝐿−1) and 𝜎 from Eqn (17) are invertible it follows that
(𝑋 (𝑡 )

0
)𝑡≥1 is strongly irreducible with respect to 𝑞(𝑥0).

Proof. For 𝑙𝑏 = 1 Eqn (34) tells us that (𝑋 (𝑡 )
0

)𝑡≥1 is a Markov

chain with transition kernel:

𝐾 [1] (𝑋 (𝑡−1)
0

, 𝐴) =

P
(
GCN

[1] (𝑋̃ (𝑡 )
0

∼ DDRM(𝜇̃ [1]
𝜃
, 𝑦 (𝑡 ) )

)
∈ 𝐴

)
,

(36)

∀𝐴 ∈ BΩ by Eqn (33). From Gaussian sampling in the DDRM we

have a sample space Ω = R𝑛×𝑑 and thus ∀𝑡 ≥ 1:

𝑃
(
𝑋̃

(𝑡 )
0

∼ DDRM(𝜇̃ [1]
𝜃
, 𝑦 (𝑡 ) ) ∈ 𝐴

)
> 0 , (37)

∀𝐴 ∈ 𝑆𝑞 (𝑥0 ) , ∀𝑥
(𝑡−1)
0

∈ Ω, where 𝑥
(𝑡−1)
0

is the past sample used

for training. Note Eqn (17) gives:

GCN(𝑋 ) = 𝑓 (𝐿−1) (· · · 𝑓 (0) (𝑋 )) , (38)

where:

𝑓 (𝑙 ) (𝑋 ) := 𝜎 (D̃− 1

2 W̃D̃− 1

2 𝑋 Θ(𝑙 ) ) , (39)

which from the assumed invertability has associated inverse:

𝑔 (𝑙 ) (𝑋 ) := D̃
1

2 W̃−1D̃
1

2 𝜎−1 (𝑋 ) (Θ(𝑙 ) )−1 , (40)

∀𝑋 ∈ 𝑔 (𝑙+1) (· · ·𝑔 (𝐿−1) (𝐼𝑚(GCN))). Thus ∀𝐴 ∈ 𝐼𝑚(GCN):

P
(
GCN

[1] (𝑋̃ (𝑡 )
0

)
∈ 𝐴

)
= P

(
𝑋̃

(𝑡 )
0

∈ 𝑔 (0) (· · ·𝑔 (𝐿−1) (𝐴))
)

(41)

> 0 , (42)

where line 42 follows from Eqn (37). Finally, as 𝑆𝑞 (𝑥0 ) ⊆ 𝐼𝑚(GCN)
the result now follows. □

Remark: The 𝑙𝑏 = 1 case can practically be achieved for the

DDPM, see our SinDDM comments in Section 5 [14]. We leave the

generalisations of this argument to chains with memory (𝑙𝑏 > 1)
for future work.

We now have our main result:

Theorem 3. If the assumptions of Lemma 1 hold and (𝑋 (𝑡 )
0

)𝑡≥1

is positive Harris recurrent with invariant distribution 𝑞(𝑥0) then
Assumption 2 holds as 𝑡 → ∞.

Proof. From Lemma 1 (𝑋 (𝑡 )
0

)𝑡≥1 is strongly irreducible thus

we immediately have that (𝑋 (𝑡 )
0

)𝑡≥1 is irreducible and aperiodic.

Thus, as 𝑞(𝑥0) is assumed to be invariant, it follows by Theorem

1 in the work of Tierney that 𝑞(𝑥0) is the equilibrium distribution

for (𝑋 (𝑡 )
0

)𝑡≥1 [25].

Furthermore as we assumed (𝑋 (𝑡 )
0

)𝑡≥1 to be positive Harris

recurrent it follows that (𝑋 (𝑡 )
0

)𝑡≥1 is ergodic. Now ∀𝐴 ∈ BΩ we

Figure 3: Different 𝜎̂𝑦 values being trailed to mimic 𝜎𝑦 being
unknown in a DDRM where 𝜇𝜃 (·, ·) comes from a PIU-Net.
Here a DDPM was trained on the MNIST data set and the
original image was an unseen sample [5].

define 𝑓 (𝑥) := 1{𝑥 ∈ 𝐴}, which is 𝜇-integrable with
∫
Ω |𝑓 | 𝑑𝜇 =

𝜇 (𝐴) ≤ 𝜇 (Ω) = 1. Thus noting:∫
Ω
𝑓 𝑑𝑞(𝑥0) = E𝑋∼𝑞 (𝑥0 ) [1{𝑋 ∈ 𝐴}] = P𝑋∼𝑞 (𝑥0 ) (𝑋 ∈ 𝐴) , (43)

Theorem 2 gives:

lim

𝑛→∞
1

𝑛

𝑛∑︁
𝑡=1

1{
(
𝑋

(𝑡 )
0

|𝑦 (𝑡 )
)
∈ 𝐴} 𝑎.𝑠.= P(𝑋 ∈ 𝐴) ∀𝐴 ∈ BΩ , (44)

where 𝑋 ∼ 𝑞(𝑥0), the result now follows. □

Remark: We believe the assumption that𝑞(𝑥0) is invariant should
hold as during training the model would not benefit by deviating

from it. Thus setting learning rates carefully to avoid overshooting

minima will be crucial.

Theorem 3 shows that under the right conditions, our iterative

GCN, DDPM, DDRM method can be seen as an MCMC approach to

learning and sampling data from the true underlying distribution.

As is the case with many MCMCmethods, a burn-in period is likely

beneficial as initially Assumption 2 will be a poor approximation.

An issue that arises from not knowing the true distribution is

the 𝜎𝑦 value in Assumption 1 is unknown despite being needed for

the DDRM. Letting 𝜎̂𝑦 denote the 𝜎𝑦 value used in denoising we

find the DDRM to be robust to changes in 𝜎𝑦 for 𝜎̂𝑦 = 0.05. Kawar

et al. also use 𝜎𝑦 = 𝜎̂𝑦 = 0.05 for their denoising examples [11].

Figure 3 shows various 𝜎̂𝑦 being trialed for different 𝜎𝑦 values on

an application to the MNIST data set purely for illustrative purposes

[5]. Here 𝜎̂𝑦 = 0.05 has strong sampling results even as we range

𝜎𝑦 from 0.1 to 0.5 (where the input image pixels range is [−1, 1]).

4 APPLICATION TO FINANCIAL DATA
4.1 Financial graph construction
For testing our GDN framework and benchmark comparison, we

focus on an equities return application. As mentioned in Section 1,

we view this as a highly applicable domain since the data is noisy,
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has an underlying signal and originates from multiple sources.

Furthermore, both assumptions should hold as while Theorem 3

proves Assumption 2 holds more generally, as argued in Section 3

financial returns data is a specific example that should also satisfy

Assumption 1. We build our financial network as a “dynamic graph

temporal signal” object to allow use of the PyTGT data compiler

[19]. Our graph consists of 200 vertices, each corresponding to a

US equity. For our vertex features we use daily returns, specifically

beta neutral log close-to-close returns defined as:

𝑟 (𝑆𝑡 ) := log

(
𝑆𝑡

𝑆𝑡−1

)
− log

(
SPY𝑡

SPY𝑡−1

)
, (45)

where 𝑆𝑡 corresponds to the stock 𝑆 close price on day 𝑡 , and SPY

is used to hedge (taking 𝛽 = 1), ensuring dollar neutral portfolios.

For our graph weights, we use the Wharton Research Data Services

(WRDS) individual stock fundamentals data. For each day, we apply

a PCA transformation across the 230 WRDS features, retaining the

first 𝑝 principal components that make up ≥ 80% of the variance,

with the purpose of denoising the data. Next, we compute the

distance correlation for the post-PCA vectors of each vertex pair.

Finally, we set any correlations below 0.7 to 0, leaving us with

20% − 30% of all possible edges.
3

4.2 Loss function
Our model has two separate loss functions. The first is the unsu-

pervised loss as in Eqn (24) for our DDPM module. The second is

the main GDN loss where we train in a supervised setting. As we

are looking at equity returns, we take inspiration from Vuletić et al.

[27] who introduced a loss combining MSE, profit and loss (PnL)

and Sharpe Ratio (SR). We build our loss around MSE and PnL,

similar to an elastic net approach. Defining 𝑆𝛼𝑡 (𝜃 ) as the models

prediction of 𝑟 (𝑆𝑡+1) for parameter 𝜃 , the PnL on day 𝑡 is:

PnL𝑡 (𝜃 ) :=
1

200

200∑︁
𝑆=1

sign(𝑆𝛼𝑡 (𝜃 )) × 𝑟 (𝑆𝑡+1) . (46)

An issue here is

𝑑

𝑑𝑥
sign(𝑥) 𝑎.𝑠.= 0, thus PnL𝑡 can not be used for

stochastic gradient descent (SGD). To overcome this, we follow

Vuletić et al. [27] and approximate PnL𝑡 with:

P̃nL𝑡 (𝜃,𝛾) :=
1

200

200∑︁
𝑆=1

tanh(𝛾𝑆𝛼𝑡 (𝜃 )) × 𝑟 (𝑆𝑡+1) , (47)

where 𝛾 controls the gradient of tanh(𝛾𝑥) around 𝑥 = 0 [27]. Our

final GDN loss is then given by:

𝐿𝛿,𝛾 (𝜃 ) := 𝛿 (−P̃nL𝑡 (𝜃,𝛾)) + (1 − 𝛿)MSE(𝑆𝛼𝑡 (𝜃 ), 𝑟 (𝑆𝑡+1)) . (48)

4.3 Results and discussion
For our train/test regime, we consider periods of 100 days, which

allows us to have a rolling validation set; we use the last 100 days

of train/test results to tune the hyper-parameters for the next 100

days. Our full backtest is over 2 years of trading data, and on any

single day we train on the last 5 days and then predict the current

day. We consider non-weighted portfolios (NW), where every trade

is of equal size as in Eqn (46), and weighted portfolios (W), where

the size of each trade is proportional to the size of the signal 𝑆𝛼𝑡 (𝜃 ).
3
Distance correlation takes values in [0, 1] thus we need not consider negative weights.

Figure 4: The cumsum PnL for the GDN (top) and GCN (bot-
tom) over the eight portfolios.

We also consider quantile portfolios, where we only trade on the

𝑄% of strongest signals for 𝑄 = 25, 50, 75, 100.

Figure 4 (top) shows the cumulative sum (cumsum) PnL for

the GDN under these eight portfolios. Here, we observe that the

weighted portfolios outperform their non-weighted counterparts,

and performance is inversely proportional to 𝑄 , both as expected.

The GDN shows very strong performance with all portfolios having

an annualised SR above 2.23 and the strongest strategy,W25, having

a SR of 4.41. To more rigorously conclude that the GDN produces

positive Sharpe Ratios, we use the hypothesis test introduced by

Bailey et al. that corrects Sharpe Ratios for selection bias under

multiple testing and non-Normally distributed returns [1]. Testing

𝐻0 : SR = 0 vs 𝐻1 : SR > 0, we obtain 𝑝-values of 𝑝 < 1 × 10
−4

for

all eight portfolios, giving strong evidence to reject 𝐻0 in favour of

𝐻1, and concluding that the GDN produces positive Sharpe Ratios.

To highlight the additional performance the GDN yields, we

compare it to the baseline GCN to directly see any improvements.

Figure 4 (bottom) shows the cumsum PnL for the GCN over the

same period. Here we see two of the portfolios now produce a loss,

while the strongest portfolio, again W25, returns only a quarter of

the GDNW25 portfolio. Figure 5 further highlights the discrepancy

in model performance; here, we see the GDN greatly outperforms

the GCN across all eight portfolios for annualised SR, annualised

average return and PnL per trade. We note the GDN W25 portfolio

has a very impressive annualised average return of 57.7% over the

two years of testing.

To rigorously compare if the GDN PnL underlying mean, 𝜇GDN,

is larger than the GCN PnL mean, 𝜇GCN, we use the two-sample t-

test from Snedecor and Cochran [23]. Specifically we use the equal
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Figure 5: The annualised Sharpe Ratio (top), annualised aver-
age return (middle) and PnL per trade (bottom) for the GDN
(left) and GCN (right) over the eight portfolios.

variances case, whichwe view as valid as each portfolio’s GDN/GCN

pairs have variances within 16%. We test: 𝐻0 : 𝜇GDN = 𝜇GCN vs

𝐻1 : 𝜇GDN > 𝜇GCN, obtaining 𝑝-values of 𝑝 < 2× 10
−4

for all eight

portfolios, again giving strong evidence to reject𝐻0 in favour of𝐻1.

Thus we conclude there is clear evidence that the GDN improves

performance relative to the baseline GCN.

5 CONCLUSION AND FUTUREWORK
Our original aim was to produce a model that can handle noisy

graph data in an attempt to extend GRL methods to such domains.

To do this we introduced the novel GDN framework in Section 3

and provided the mathematical reasoning behind it in Lemma 1

and Theorem 3. Here we proved under the right assumptions it can

be viewed as including a built-in MCMC method. We have shown

in practice the model not only has strong results, with Sharpes

consistently above 2.23 and yearly returns of up to 57.7%, but also

outperforms the baseline GCN model. Our t-tests showed there is

statistically significant evidence to conclude the GDN has a higher

mean PnL than the GCN.

Our work opens up further avenues of investigation. One exten-

sion would be adapting the DDPM to SinDDM [14]. This would

make the 𝑙𝑏 = 1 assumption in Theorem 3 hold as SinDDM provides

a method to train a DDPM on a single input [14]. Another possible

extension would be to adapt the model to Improved DDPM [16]

which removes some restrictive assumptions and generalises the

loss function, achieving noticeably better performance [16]. The

reason we do not build our GDN around Improved DDPM is that it

invalidates Theorem 1, however this may be minor upon testing.

To add further validity to our results, future research could in-

volve changing the graph component. We used a GCN as it is inter-

pretable and Assumption 1 is applicable to many domains; however,

this could be adapted to other architectures such as graph atten-

tion networks (GATs) [26]. Doing this may provide performance

increases and comparing GAT to a GAT-based GDN could provide

further evidence to support our findings.
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